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What is Morphology?

● Words are made of smaller meaning bearing units 
which are called “morphemes”.

● Morphological segmentation is the process of 
segmenting words into their morphemes.
○ Stem: advance + ment
○ Suffix: politic + al
○ Prefix: dis + close
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● Morphotactics involves a set of rules that define how 
morphemes can be attached to each other. 

● In agglutinating languages (Turkish, Finnish or 
Hungarian), concatenation of morphemes plays an 
important role in morphology.

What is Morphotactics ?
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Related Work on Unsupervised 
Morphological Segmentation

● Research based on word-level orthographic patterns:
○ Goldwater et al. (2006)
○ Creutz and Lagus (2005, 2007)

● Research based on relation between morphology and 
syntax:
○ Can and Manandhar (2010)

● Research based on relation between morphology and 
semantics:
○ Schone and Jurafsky (2001)
○ Narasinham et al. (2015)
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Main Intuition
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Main Intuition
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Main Intuition
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Model Overview

Integrates morphotactics with semantics

Putting semantics at the center of morphology learning task

Directly using semantic similarity between words to detect segmentation points.
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Neural Word Embeddings

● We obtain word embeddings from a raw corpus by 
using Mikolov et al. (2013)’s “word2vec” model in 200 
dimensional vector space
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Morphological Segmentation Using Semantic 
Similarity

● Baseline splitting algorithm is based on the semantic 
similarity between word and its substrings.

● Semantic similarities are obtained by calculating the 
cosine distance between the word embeddings:
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Morphological Segmentation Using Semantic 
Similarity
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● We use “maximum likelihood estimation (ML)”  to build 
a bigram language model for morpheme transition.

● ML is modelled according to following formulas:

Modeling Morphotactics with ML Estimate
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(1)

(3)

(2)
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● Morphotactics ML model is built on the baseline 
results that are obtained via semantic splitting 
algorithm.

● After model training is finished, final segmentation 
of a word is selected among all possible 
segmentations by the viterbi algorithm.

● Laplace smoothing with additive number 1 is used to 
overcome the sparsity problem.

Modeling Morphotactics with ML Estimate
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Full Model
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Model Overview Summary

Training Word 
Embeddings with Raw 
Corpus by Word2Vec

göz       <1 3 4 2 5 ...>
gözle    <5 8 6 1 3 ...>
gözler   <4 1 5 3 9 ...>

.
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Full Model
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Model Overview Summary

Training Word 
Embeddings with Raw 
Corpus by Word2Vec

Build Baseline Model by 
Semantic Splitting 

Algorithm
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Full Model
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Model Overview Summary

Training Word 
Embeddings with Raw 
Corpus by Word2Vec

Build Baseline Model by 
Semantic Splitting 

Algorithm

Train Bigram Language 
Model with ML Estimate 

for Morphotactics
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● In order to train word embeddings model:
○ Turkish BOUN corpus: 361M word token, 725K word types
○ English wiki corpus: 129M word token, 218K word types

● Baseline semantic splitting algorithm applied on 
MorphoChallenge (2010) data:
○ Turkish: 617K word token
○ English: 878K word token

● For evaluation:
○ Turkish: 1760 word token
○ English: 1050 word token 

Data and Parameters
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● Data composition for whole process is as follows:

Data and Parameters
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● In semantic splitting algorithm, we assign cosine 
similarity threshold as d = 0.25 to decide the correct 
split points by performing our models on the 
development set. 

Data and Parameters
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● Comparison of our models with other systems is as 
follows:

Results on Turkish
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● Comparison of our models with other systems is as 
follows:

Results on English
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● On Turkish:

● On English:

Correct and Incorrect Segmentations
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● On Turkish:

Main problem is oversegmentation !

Correct and Incorrect Segmentations
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We presented:
● Probabilistic model that integrates morphotactics 

with word embeddings to use semantics in 
morphological segmentation task

● Especially in agglutinating languages our model 
performs challenging results.

Future Work:
● Joint model that learns morphology, syntax and 

dependency structure with the help of sematics.

Conclusion and Future Work
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Questions ?
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